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SUMMARY

The thesis is a study of the dynamic aspects of a hemispherical

shell with various edge conditions and subjected to various types of

loading.

By using the modal analysis, closed-form solutions are obtained

for the axisymmetric dynamic response of hemispherical shells with

roller-hinged edges and roller-clamped edges, By applying a harmonic

ring load to withhold the motion either along the longitudinal direction

of the roller-hinged edge or along the transverse direction of the

roller-clamped edger the eigenfunctions for the hinged and clamped

edges, respectively, are obtained, Numerical results for free vibra-

tions and the dynamic response of the shell are obtained and discussed

in detail, Finally, it is shown that this analysis can equally well

be carried out by applying the mode-acceleration method of Williams,

Although the analysis carried out for a problem with external

dynamic loading is similar to the analysis of a problem with thermal

loading_ the inhomogeneous boundary conditions in the displacements

arising from the thermal effect must be considered in the latter

problem, To take care of this inhomogeneity, a particular term is added

to the formal solution so that the resulting solution satisfies the

governing differential equations and the boundary conditions.

To provide an example of the application of this procedure to

hemispherical shells, the free vibration of an elastic cylinder with a
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hemispherical shell bottom is studied. Comparison made with respect to

a clamped-clamped cylinder shows that the effect of the bottom is

larger for thicker cylinders and partlcularly significant when the

cylinder is short.

Finally. an investigation of the random excitation of thin

elastic shells is made. The problem is discussed in detall for

hemispherical shells with roller-hlnged and roller-clamped edges.

Numerical results are obtained for a hemispherical shell with a

roller-clamped edge when the shell is subjected to a non-statlonary

separable random process uniformly distributed over the shell surface.

Both wlde-band and band-llmlted power spectral densities are included.
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CHAPTER I

INTRODUCTION

By using the inextensional theory to investigate the acoustic

behavior of bells, the vibration of thin spherical shells was first

studied by Lord Raylelgh [I_ 2] In 1881_ In 1882, Lamb [3] first

determined the natural frequencies of a closed spherical monocoque

shell. Love [4] in 1888 developed the general theory for small free

vibrations of thin elastic spherical shells_ Wlth the use of a

technique introduced by Van der Neut [5]_ the equations of the classlcal

dynamic bending theory of elastlc spherical shells was derived by

Federhofer [6]. Using essentlally the same technique, uncoupled

equations which include the effects of transverse shear deformation

and rotatory inertia have been derived by Kalnlns [7] for shallow

spherical shells and extended by Prasad [8] to nonshallow spherical

shells. By using the approach from Berry [9], free axlsyn_aetrlc

vlbratlons were studied by Naghdi and Kalnlns [I019 where the natural

_requencles for free-edged hemispherical shells with thlckness-radius

ratlo_ Largez than 3.0] nave beet obtalned_ The _requenc_ equations

corresponding to spherical shells and hemispherical shells are

discussed by Kalnins in [ii]. Hwang [12] obtained the natural fre-

quencies for a hemispherical shell using a method similar to that

used by Baker [13] to obtain the frequencies for a complete spherical



she11_ neglecting the bending effects° In [14] Kalnlns presents a

numerical method for the calculatlon of the natural frequencies and

normal modes of arbitrary rotationally symmetric shells° The non-

symmetric dynamic problems of elastlc spherical shells have been

studied by Silblger [15] and then by Wilklnson and Kalnlns [16]. Baker_

Hus and Jackson [17] have studied the axlsymmetrlcally dynamic

response of a complete spherical shell by uslng_ baslcally_ the mem-

brane theory_ Hwang [18] has obtained the experimental results of a

thin hemispherical shell having a free edge_

The present study is concerned with the dynamic aspects of a

hemispherical shell with various edge conditions and subjected to

dynamic, thermal and random loadingso

In order to derive the set of governing equations in a more

complete fashion_ the assumption of seven stress-displacement rela-

tions has been usedo The variational theorem of the energy functional

yields the stress differential equations of motion_ which include the

rotatory inertia terms and the effect from a visco-elastic foundation s

and ten stress-displacement relations, which take into account the

transverse shear deformation and a thermal input_

Solutions corresponding to various boundary conditions a-e

sought for the axisymmetric response to a dynamic load and to o

thermal load, The results may be used fo_ many practical problems

such as the response of a hemispherical nose of a space vehicle during

its re-entry when it is subjected to both a high temperature gradient

and an atmospheric pressure acting on the shell surface_ Furthermore,



the free vibration of an elastic cylinder with an elastic hemispherical

bottom is investigated° Finally, the response of a hemispherical shell

to a random excitation is investigated by use of a modal analysis°
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CHAPTER II

BASIC EQUATIONS FOR SPHERICAL SHELLS

To derive a set of governing equations for spherical shells

that are more complete than those usually used the seven components

of strain proposed by Reissner [1] are used° A linear distribution

of _o which is defined to be tht rotation ot the _urface element around

thf no_*l_ has bee_ assumed insteac of the constant distribution

used in [1]_ Furthermore s the potential energy from a vlsco-elast!c

foundation 9 the kinetic energy_ and the thermal strain energy of the

she_1 have been added to the energy functional considered by Relssner

[ 2] and Naghdl [3]

The _eometry and sign conventions of the shell are shown in

Figure i. The displacement ot a point in space has the form

+ Uoe o + We (2_i)U = U e n

where e#_ %, and en are base vectors and U_, Ue_ and W are dlsplace_

m_nts along the directions of the base vectors_

Using the orthogonal curvilinear coordinate system _, e, and

_0 where _ and e are the an_ular spherical coordinates of a point on

the middle surface of the shell and & is the distance measured alonR

the outward normal from the middle surface the seven components of

strain are deduced from[ _ . They are



i
d4_ ,

j"
J
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Figure i, Geometry and Slgn Conventions of the Shell
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aA_ ! Sin aue 1ae
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f

aA _ Sin

I

 u,_ae%cot *i
- _o

aN

a_

1 aN a
y__¢ = +---== -==+ A

aA_ a@ _ aE

Ve =+_1 __W+A _-_ /Ue/

aA_ Sin @ ae at _A_ /

Here a is the principal radius of curvature of the middle surface of the

spherical shell. Go the rotation of the surface element around the normal_

and

At. = 1 + _ (2°3)
a

The displacements are approximated in the following manner:
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U_ = u_ + _B_ (2°4)

Ue = u8 + _B 8

1
W = w + _w' + _ _2w"

_o = wo ÷ _,

In equations (2,4) B_ and 88 are the changes of slope of the normal

to the middle surface along the coordinates _ and 6_ respectlvely,

u_0 u6, and w are the components of displacements of a point on the

middle surface, and _o is the rotation of the middle surface around the

normal, Primes indicate differentiation with respect to _o

By substituting equations (2°4) into equations (2_2) one

obtains

c_

i L!
,W °!

* 1 __ _/

=i _¢ o+_ _K_ ÷_c,- a [!

ce =
* 1 _2 w" ....° + +7 71

A_ _

(205)

1

¥¢e ='_ {y¢o + z;,c¢} + _o + _,

A_
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E = 4-W ! ÷ _W"

I

J

Q ÷ r.
YO_ = YS_

a Sln

where

= -- + W

a LD _

co =! j I

0 Is --T7

_U_e + u cot _ + w

De

o i DUe

Y_ = a a_

o = 1
YO

a Sin ¢ au ¢t
- uoCos

De

(2.6)

o=+law u
Y¢_; ---- + Be

a De a

i Dw ue
+ 8O

aYe_ = +
a Sin ¢ De
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and

w !

K¢ = K¢ +--a (2.7)

Ke = Ke +- a

K¢ a
S_

K - 1
e

a sin ¢

i _88

1
K = --

8 a Sin ¢

a6e 1--+ 6¢Cos
_e

The forces and moments per unit length on the middle surface

are of the following form:

h/2

(N,, N¢e, V¢) :
-h/2

(_¢' _¢0' T¢_) A_d_
(2°8)

h/2

(Ne,,Ne, ve) = f
-h/2

(Te¢, as, we ) A_d_

h/2

(M,,M,o) : l
-h/2

(o¢, Tee) _A_d_
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h12
(Me,,Me) = f (T

-h/2 eo' Te) _A d_

where o0, o 0 are the normal stresses, Toe , T0_ , TO_ the shearing

stresses, N0, NO, N00 and N00 the stress resultants, M0, M0, MOO and

Me0 the stress couples, and V0 an_ V0 the transverse shear stress

resultants°

As usual, the components of stress are considered to vary

linearly throughout the thickness of the shell° That is

a0_

co

T
0e

I_al_

I

a 2

a3

To0 ._%_

_bl_ (2.9a)

b2

b 3

_b_J

and

= _ v0 - _
TO_ A_ - _

a5 Ve i -

TO_ A_ l p÷ ÷ ;-_" e "Ho+P _ H

a_

k S S 2 2
= n-E- +___ -

AC2 h 2

(2o9b)
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I

+_ pn_++
n Pn Hn I

!
;J

where a]_ a2_ a3_ a4_ as_ bl, b2_ b3_ b4 are to be determined by

us!n b equations (2o8)_ and the functions Sl and S._ are still un-
+ = +

de_ermlned_ p: _nd p_ p% and p8 _ and Pn and Pn are_ respectlvely,

the values of _ %et _ and o at the outer and inner surfaces of

the she11® The coefficient km is a dlstinguishing factor between the

contribution of transverse shear deformation and normal stresso

Finally

I I ll+ H+= i_2_ _3

H0-- _ h/2

H; = H_ ffi If + 2 _h/2 - 3

H ffi I+
n 2 "2 h/2

. z _ h_._ 1_..

2a A

l+h]
.. ._

2a A 2

H_ " 1 " _h/2] 2 h/2 2a A_;

(2o9C)

are obtained by using the stress equilibrium equations of elasticity

in the _ plane together with the prescribed boundary conditions for

_s TO_, and 0_[4]*.

*Page 93 of reference [4]_
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By substituting equations (2_9a), (2o9b), (2o9C) into equations

(2°8), aI _.o a5, and bI .... b4 are obtained as follows:

/

a1

i

a 2

a 3

a 4

a 5

1
"h

N_ b1

NO b2

N¢0 b3

NO¢ b4

3/2

12

h3

M8

M¢O

MO¢

(2olD)

With the rotary inertia, energy from a viscoelastic foundation,

and thermal strain energy added, the variation of the energy functional

in the action integral form is

t 1
6A- 6 ; fff

to V
0¢¢¢ + abe B + o¢¢_ + _¢0Y¢0 + _B¢y8¢

p

+ x¢¢y¢_+ TB "yecj -
/

(&/2 13UI 2_ -+i ol _w12

4

- r0 •? AE2a2Sin ¢ dCdOd_dt

(2oll)

- 6 f tl

t o

kf + +

Sff ,---2 (u¢ 2 + uo2 + w2) + (p;U: + PoUo

, )2i

+p ) ;l+2a + (p;U; + p;U; + p:W-)(1 - h--)22a,
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tI h/2

• a2Sin d dedt- f (oU + ntUt
_o _h/2 n n

+ _nW) I +, d_ atdgtdt + f f_f
t
o

_u_ _u 0 1

• 5u + _ _u + _ _w a2Sin Cd_dOdt

L_t _ _t 0 _t

where V denotes the volume, t is the time_ S indicates that part of

the surface where the surface loads
P_' PO' Pn _ p _ p _

prescribed. U:, U+0' W+' U;, U;. W-designate the displacements U,, U0,

and W at the outer and inner surfaces_ respectlvely_ and kf and _f

are the elastic parameter and viscous damping parameter_ respectively.

for the foundatlon_ It has been assumed that kf and _f are the same

in the three directions _, e and &o The third integral represents

the potential of the edge loads and the subscripts n and t refer to

the normal and tangential directions on the boundary faces_ ,he

stress resultants and the stress couvles due to edge stresses, Nn,

Nut, Vn, Mn, and Mnt , are defined similarly tc those in equations (2_8).

The last integral represents the non-conservatlve energy due to the

damping of the foundatlon*_ We note that

h/2

Qn = f _n A a2d_ (2_12)
-h/2

*Page 56 of reference [ 5] ,_
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and furthermore tha_*

rO = 1=2EI 0¢2 + oB2 + oE 2 - 2v (o¢o e + o¢oE + oBo _)

+ 2(l+v) (T¢8 2+_B ]

(2o13)

#t

+ aoe (0¢ + o e + ol;,

Is the complementary-energy density for Hookean materials, where t

denotes time, =0 the coefficient of linear expanslon_ B the tempera-

turep E the Young's modulu_ and v is the Polsson's ratlo_

Equation (2_11) is now integrated with respect to _ through-

out the thickness of the shell, Next the variation Indicated in

equation (2.11) is performed° Then the coefficients of the variational

changes in the deformations, stress resultants and stress couples

are set equal to zero***. If quadratic and higher order terms in h/a

are neglected, in the case where o_ = 0 and W = w a system of

equations governing the behavior of spherical shells is obtained,

They may be grouped in two parts. First there are the following

relations:

**Reference [6], page 124.,

***Principle of stationary action, ppo 159-162 of reference [7],
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[_¢o o1 EUOB0*N¢ " Eh 4 ve E -
1-v 2 1-v

(2.14)

leo _ F_OBO*1-v 2 l-v

N¢e ''Eh_ lye° + t_°+aat_i"l+v

Eh o
Nee -_ - a_ - aa_'

1-F_

Me =,D K_ + vK ....
l-v

Me - D + vK -
1-V

Mce . gh3 K¢ 4 m°/a + (o'i
12 (l+v)

Eh3 [_e " t_°/a - t_'iMe@ " 12(l+v)

[ I °e0 +m
Ve - 65-.Gh Y0_ 6
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wlth

1
u = _ (h/a) 2

12

h/28,d_ h12 ., e*o - f , e* = / 0"_d_
-hi2 1 -hi2

(2oZ5)

h +,++ - -
,,,# - _" (p H p H )

h ++ - -
9 m0 = _ (P0H0 + P0H0 )

and

O00 ==
i
m II | '

2(I-a)
(v0 - v_°) - aa(% - _)J (2o16)

, 1

2(z-a)
(Ko - K@) - l/a (yO ° - _r_o;1

Next there are the equations of motion° They are

_N _N

_--_ +_Cosec _ + (N_- N o) Cot _ + V_ (2,17)

_t 2 _)t2 _t

_+ _- Cosec @ + N_0Cot _ + V0 + N0_Cot
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s a
32u

0hk I _ + phak 2 + kfu 0
3t 2 Bt 2

3v_ _ve v_cot _ (N_--+ Cosec _ + - + NO)
a_ 30

at = apn

+ _ Cosec $ + (Me - M 8) Cot _ = a(V¢ - m_)
3¢ 3e

I__ oh3a ( k12 r
3t 2 a _)t2 /

3Mse
----_+ Cosec $ + (Me@ + Me) Cot _ - a(V o

_ 3e

3288 c _2u8/
k .___+_E

r 3t 2 a 3t 2 ]

= mo)

=!(Me__ H_e) = o*N¢e " NS_ a

where

*The corresponding sixth equilibrium equation derived in [ 8] reads

- no, "} -
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k I - 1 + a _ k2 - 2a (2o18)

9
k - l+_a _ c - 2

I" 3 r

and

P,

P0

Pn

1
s u

4

++

PoHo - PoHo

I 4-+ -Pnl-In - PnHn
d
P

!

(2o19)
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CHAPTER ili

FORMULATION OF PROBLEMS FOR THE

AXISYMMETRIC VIBRATION OF HEMISPHERICAL SHELLS

Governin Differential_

By setting kr = k2 = cr = kf = Af = 0, and k I = i in equations

(2o17) and taking the 8=variation to be zero_ one obtains the

governing equations of torslonless motion for the axisymmetric

deformation of a spherical shell without the effect from the

transverse shear deformationo They are

32u

Ne) Cot , -V, = pha
3t 2 _ ape

(3_i)

÷ V¢Cot ¢ + (N@ + N 8) = pha 32_
3t2 _ ap n

_M_ + (Me - M 8) Cot ¢ _ aV = 0

3¢ *

Here the inward normal direction is considered to be positive° The

stress, strain, and displacement relations are

Eh Eu080

N¢ =--'- (¢¢0 + vceo ) ®
1-v 2 l_v

(3o2)



a(l-_2)L\_¢ /

Ne = Eh (ceO + _c¢o ) _ Eaoe0
l-u 2

Ea 0 ,_ -- 80
i-9

Me = - D(K¢ + _K e)

Em e
oo

m

I-U

 Iiu,I+ Cot ¢ + _+

M = - D(K + _K )
e e ¢

-N.

Ea e
Ol

Ea e
Ol

i--_)

where aO, the coefficient of linear thermal expansion, is assumed to

be constant throughout the thickness of the shell and

. h/2 .

e0 = ./ e d_
-h12

(3.3)

. h/2 .

eI = f e CdC
-h/2
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with 8 denoting the temperature°

By eliminating V$ and substituting the stress-displacement

relations in the first and second equations of (3ol), the followlng

governing differential equations are obtained if a is considered

small compared to lz

aL(w) + L(%) - (l+v)w + (l-v), - k
8t2

(3.4)

C [AIP + BIQTI]

[LL(_'*) + (1-v)L(w)]
82w

+ (l+v)L($) + 2(l+v)w + ), -_
8t 2

= AlP n + BIQT2

where

A1 =
Eh

=0 (l+v)

B 1 " .......

h

E



q_
#.v

QT2 = " 2aO0 + --_ Cot _ + ---'---

and

L(') = (1-x 2) _-_- 2x _-'_

_x _x

wlth

x = Cos

Note that in equations (3o4) 9 0
O and 01 may be functions of @ .

Bgundarv and Initial Condltlqns

The boundary conditions corresponding to the edge supports

shown in Figure 2 are

(I) Roller-clamped edge

= _-E= o

u_ _

_w
_ 0

Q¢ = 0

W

ate= --
2

(3,5)
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(II) Roller-hinged edge

w=O

N_=0

M_=O J
(3°6)

(III) Clamped edge

u _ _-_.0

Sw
._.m 0

a_

wm0

1T

at _= 2 (3°7)

(IV) Hinged edge

u. ffi ._ ffi o

win0

M# = 0

w

at %=--
2

(3.8)

The initial conditions which will be considered are

u@ =wm0

_U

_ut = _w = o

_t _t

at t - 0 (3.9)
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The general solutions of equations _3.4) governing the dis-

placements of spherlcal shells subjected to surface loading and/or

thermal shock will Include the following three parts:

(A) Homogeneous solutlon.

(B) Partlcular solutlon corresponding to surface loadlng

alone.

(C) Partlcular solution corresponding to thermal effect

alone.

The final solutions will be obtained by satisfying the appropriate

boundary conditions shown iI equations (3.5) through (3.8).

It should be noted that when the thermal effect is consldered0

the homogeneous stress boundary conditions expressed in terms of

displacements will become Inhomogeneous boundary conditions in the

displacements,
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CHAPTER IV

DYNAMIC AND TKERNAL RESPONSE

By using the modal analysis, closed form solutions are

obtained for the axisymmetric dynamic response of hemispherical

shells with roller-hinged edges and roller-clamped edges_ By

applying a harmonic _In 8 load to withhold the motion either along the

longitudinal direction of the roller-hinged edge or along the trans-

verse direction of the roller-clamped edge_ the eigenfunctions for

the hinged and clamped edges are obtained, In solving the problem

including thermal loading, the inhomogeneous boundary conditions in

the displacements arising from the thermal effect must be considered.

A particular term is added to the formal solution of the problem with

homogeneous boundary conditions in the displacements such that the

resulting solution now satisfies the governing differential equations

and the boundary conditions.

The governing differential equations are those of equations

(3_4). They are

L(¢) - - aL(w) + (1+_) w - (1-v)¢

+ X--- AI _ P,d¢- BI _QTldC;)t2

LL(w) - - LL(¢) - (l-v) L(w) + _ L(¢)

(4.1)

(4.2)
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a

A B1
-_"_2w + Pn i0+ QT2

_t 2 a a

D namic Resvonse of Shells Havln_ Roller__nseoz ...... . .... _......

When the effect of the temperature 8 _ is neglected the boundary

w

conditions (3.5) and (3.6) at _ = _ are

(I) Roller-Clamped Edge

(4.3)

_2u¢ + _)3W 0

B_ 2 _)0 3

(4.4)

(4,5)

(II) Roller-Hinged Edge

w=0 (4,6)

_u

B2w

(4,7)

(4.8)
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The solutions of equations (4_1) and (4_2) which satisfy the

boundary conditions (4.3) to (4.5) and (4.6) t¢ (4.8) corresponding

tc the roller-clampec aud roller-hinged edges_ respectively, can be

expressec In term_ ot the Legendre's polynomials i_ the following forms:

_(x,t) = _ _n(t) P (x) (4.9)
n=0,2,4,.o n

or

n=1,3,5,..

w(x,t) = _ Wn(t) Pn(X) (4.10)
n=0,2,4,._

or

n=I,3_5_**

where n - 0,2,4,.. corresponds to the roller-clamped case, and n -

1,3,5,.. corresponds to the roller-hinged case. From the physical view-

point, _ and w must be continuous functions of x and possess bounded

first derivatives_ Therefore the series given in equations (4.9) and

(4.10) will converge absolutely and uniformly_*

Substitution of equations (4.9) and (4.10) into equations (4.1)

and (4.2) yields

fen(t)
n=0,2,4,.

or

n-1,3,5,..

[L(Pn)+ - X Pn
dt 2

nit - f*+ Wn(t) [L(Pn) - (l+v)P = A1 p@d@
0

*See Reference i_ pp. 424-429.

(4.11)
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n-0,2.4,
or

n=1,3,5_..

L,.°,I..,t,ILL,P,

+ (1-v)L(Pn) +_Pn la +

X d2Wn _ A1

PnI= Pn_a dt 2

(4,12)

By using the Legendre's identity

L(Pn) - _ AnPn (4.13)

with

A = n(n+l)
n

and considering orthogonality condition D equations (4.11) and

(4.17) become
d2_b "1

__ n [(l-v)- A ! ,n + [aAn + (I+_)] w
dt 2 ru n

I ¢(O

" Az(2n+Z) ,/. Pn(O J p¢dCd_.
O 0

(4_14)

d2w I )]I_, n+i2(Z+,,)+o,^ [^-(Z-,, ,,,dt 2 n , n n

1

[ -+ An (l+v) + aAnj *n = Al(2n+l) f'
0

PnPn(f}d_

(4,15)

According to the definitions after equations (3.4) and using _,_:ation

(4.9), the relations

i dPn(X) d_tu¢(x,t) *x___ _= ,n(t )
_x d¢ n=0,2_4,.0 dx d¢

(4.16)

yield
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dP (x)
n dx

u (x,O = _ *n(O

¢0 has no contribution to the response u_ and is discarded from the

analysis, Letting n - 0_ equation (4,15) becomes

d2w 0

dt 2

1

+ 2(l+v)w0 = A1 _0 Pn(_'x)dE

Equation (4.18) has a solution

A1

w 0 - ....

a_ln

t 1

f Sin mlO(t-T) j pn(E,z)dEdz
0 0

where

(4.17)

(4_18)

(4.19)

_10 = (4.20)

represents the breathing-mode* frequency of the roller-clamped shell,

For n-1 equations (4.14) and (4,15) become

d2_ __ _a + (I+_ w 1_+ (l+v)_ 1 +
dt 2

1 _(_)

= 3A1 _ PI(_) 0f p_d_d_

(4.21)

d2w

_ + 2(1+_)(i+_)_1 + 2 12a+ <t+_
dt 2

1

- 3A 1 _ PnPl(£) dE

_..=_6_=_ _ "_, ................................. _r ................. ,,

*Mode shape is described by a constant normal displacement w over the
entire shell surface.
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If a is small compared to 1 and equations (4_21) are rearranged, one

obtains

d2(Wl-2,l ) f1 l 7
X = 3AI If PnPI (_)d_ - 2 f PI(E) " p_dCdE i

dr2 Lo 0 0 j

(4.22)

x _ + 3(1+_) (Wl+_ I)
dt2

- i 1 ,(_) 7

= 3AI _ PnPI(E)dE + 0f PI(E) 0/ p,d,d_

The first of equations (4.22_ can be integrated directly and the

solutions of equations (4.22) are

t

i f j FII(T, ) d'r'd'r
Wl - 2_i = _'0 0

t

_II 0
F21(_) Sin=ll(t'T)dT

(4_23)

where

_11 = '"/ X
(4.24)

is the ist natural frequency* for the roller-hlnged case, and

*The equations for computing the natural frequencies are those of

(4.30).
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FII " 3A1

F21 " 3A1

%1 and wI are then

1 1

_ Pn(_,_)Pl(_)d_- 2 f Pl(_)
0

1

0
PI(_)

_(_) i
f P¢(q,r)dCd_
0

l

¢(_) i

f p_(¢,z)d¢d_o f
/

(4.25)

t

_l _ _ _ f F2Z (x) Sin_ll (t-T) d x
3_ Wll 0

t

- / /
O0

(4.26)

1
wI I a

3_

t

Wll 0
F21(z) Slnmll (t-T)dT

t

+ f J" Fll(T')dT'dT
O0

i

Flnally for n _ 2 the equations of (4.14) and (4_15) are rearranged

to yield two uncoupled fourth-order ordinary differential equations.

They are

d2¢ n
A2 d_n + .__ + . Flt(t )

dr4 Aln dC 2 A2nCn (4.27)

d4w d2w

dt 4 Aln dt 2 A2nWn F2n
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where

Aln aAn "An (l=u) + An + (l+3v) (4.28)

A2n -a !An(An-l+v)2 - _2^n3 - 2_^n3(l+v).i + (1-v 2) (^n-2)

Fln(t) = Al(2n+l )

t

/ d 2 1 qb(_)

A3n + X _='_'dr2 _ Pn(_) 0f p¢(@,t) dCd_

-, aAn +-(l+v)
j

F2n(t) = Al(2n+l )

\

i

P¢(_,t)Pn(_)d_
0

A
n

d 2
- (i-v)+ _-

dt 2

1

* f pn(_.t)Pn(_)d_ + A
0 n aAn + (l+v)]

1 +({) 'I

" f Pn(_) f p¢(¢.t)dCd_ ;
o o i

,.

and

A3n = aAn(A n - 1 +v) + 2(1 + v)

Solutions of equations (4,27) may be written in terms of

convolutlov integrals as
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t

I f Sinmln(t_T) FIn(T)d T
_II 0

(4.29)

t

_ 1 y Sin,_2n(t_Z)Fln(T)dT

_2n 0

W --

n

C

..... f Sinmln(t+_)F2n(_)dT
X2 2_ 2 0

(e2n _ln ) _11

t

f
W2n 0

S lnm2n (t-T) F2n (_)d,T

where

2.1 ½
mln _-- Aln + (Aln 2 - 4A2n)

2_
(4.30)

. 1 + (AIn 2 _ 4A2 )½
_2n2 2A Aln

represent the upper and lower branches of the natural frequencies,

respectively.

h
X_ln2 and Xm2n2 are plotted for _ - 0.01, 0.02_ and 0.05 and

are shown in Figure 3, It is seen that the variation of thickness

has very little effect on the upper branch frequencies. However,

the lower branch frequencies change significantly as the thickness

of the shell tncreases_ particularly at the higher modes. In

addition, the magnitudes of the lower branch frequencies are not

bounded for the higher modes+ This contradicts the results obtained

by membrane theory,
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The final solutions for the displacements are

dr (x)
_n(t ) n

n_2,4_, dx
or

, l_x 2 (4.31)

w" _ Wn(t) Pn(X)
nffi0_2,4_ _

or

Fr__V1bratlon.of._ Clamped Shells

The boundary conditions for the present ease are

u_ - _-_- 0

_.-0

w-O

7
at_ ....

2

(4.32)

The solution for the free vibration of the shell ,,,=y _L

obtained by consideration of the following harmonic edge load acting

on a shell having a roller-clamped support:

p_ - 0

i_t
Pn " Po 6(x_O)e

(4.33)

Substitutin_ equations (4.33) into equations (4.19) and (4_27)
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with n being even integers_ the steady state solution becomes

r

_O2+(l-v) (2n+l) _ 2 .,, ,

W=Po ............. + [ _

A (fl2-_i02) n_2 _4_6_ _. A2 (fl2-mln2-) (fi2=_2n2)

(4_34)

P (0) Pn(X)__ er.

The last condition given Ir equations (4_32) is applied to

equation (4.34) and results in the following frequency equation:

_2+(I-_)

Sh = , +

A(R2-_I02)

® (2n+l) jA_2-A_+(I-9) i
_ LI J

n=2 #4_ _. A2 (f12-_In2) (_2-_2n2)

q

P f(O)i ffi0

I

i
t

(4_35)

The natural frequencies R are obtained by using a_ iterative

procedure on a Burrough 220 electronic computer. The roots of

equation (4,35) are searched for between every two consecutive

_in2(iffil and 2 correspond to upper and lower, branches, respectively).

A number of trial values of _R2 with constant increments are fed into

equation _4_35)_ The curves S h vs. A_2 are plotted. The frequencies

may be obtained by interpolating between the two consecutive values of

AR2 where the corresponding values change signs_ The value of n for

the series solutions is then increased until the variation of

frequencies obtained is acceptable. After the approximate values

of A_2 are obtained, a more sophisticated numerical device similar

to the method of f_!se position may be programmed and used to search

for more accurate AQ2's in the vicinities of the approximate ones.
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The first three natural frequencies for a hemispherical shell

h
completely clamped along its edge with _ - 0.01, 0.02, and 0.05, and

n = 60, obtained by interpolation_ are listed in Table 1. The curves

S h vs. Xm2 are plotted in Figures 4 - 6, for various values of h/a.

For the case _ - 0_01, the largest difference between the three lowest
a

frequencies for the roller-clamped and completely clamped is eight

percent. The first three mode shapes for a clamped shell are plotted

in Figures (7-a)p (7-b), and (7-c)_

Table i, i
Xfl2 for Completely Clamped Shells with v - _

" _h . 0.01
a

1st Mode 0.512 0°522

2 nd Mode 0.787 0.805

3 rd Mode 0.879 0.940

h = 0.02 h. 0.05
a a

0.565

0.955

1.462

By applying the same technique on shells with roller-hinged

edges, the natural frequencies of shells with hinged edges may be

uotained.

DynamicResp?nse_ Mode_Acceler.atiop_S.olution

We introduce, for the present study, a method developed by

Williams [2]. In this method the governing differential equations

(4.1) and (4.2) are first written in the following vector foTm:
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/

_2u

iLB w (uBt - ph - (p_)
_t2

! I is a matrix differential operator_ and where {u a} andwhere ,LB I

{pa) are the displacement and load column vectors, respectively.

Assume the displacement vector_ according to Williams _ method

[3_,4], to be of the form

(4.36)

{ua(x,t)} ffi {ua(x,t)} -t- J_ej(t) {Uaj(X)} •
(4.37)

where {ua} and (_tal) sre solutions of

and

li  s!

[L t {_ + ohRj 2 {uaj} = 0_.aBJ BJ}

(4.38)

(4,39)

respectively. Here_ the u represent the quasl-statlc response; and
a

the uaj are the normal modes of free vibration with corresponding

elgenfrequencles Rj. The necessary coupling equations for the

evaluation of the ej are obtained by substituting equation (4.37)

Int¢ equation (4.36) and simplifying by means c equations (4.38) and

(4,39), The resulting coupled equation is

r. (¢j + Rj2¢_) {uo,j} . _ {_ }
J=l a

(4.40)
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Multiplication of both sides of equation (4_40) by the row vector

[uai] and use of the orthogonality condition9 i.e._

3 3

f I uaiuajdS = 6ij f I Uui2 dS
S e=l S e-i

(4.41)

results in the following expression:

3

f I u ludS
.. S e'i e

*j + aj2,j = _ --
3

f [ U ej2dS
S e=l

(4.42)

where S is the middle surface of the shell.

When the quasi-static solution can be obtained exactly, this

will speed up the convergence of the total solution. In general i

however_ the quasl-statlc solution simply respresents a quasi-

equilibrium position about which the dynamic response of the shell is

distributed.

Therm ll_ylnducedVibration

The governing differential equations are obtained from those

of (3.4) by setting p_ - Pn = O. They are

L($) - - eL(w) + (l+u)w - (l-v)_ (4.43)
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+_---'_z J Q,rld_'
_t 2 0

LL(w) -- LL(_) - (I-_)L(w) + _ L(%)

- _ w - _-_ + BI QT__12
_ _t 2

Analysls of the present case is slmilar to the dynamic

loading case except that the homogeneous stress boundary conditions

expressed in terms of dlsplacements will become inhomogeneous

boundary condltlons in _he displacements.

Assume solutlons for _ and w of the following typesz

n=1_3_5_ _.

OE

n=0,2,4,.o

Sn(t)Pn(X) + B2Gi$(x,t) (4.44)

W I I
n'1,3,St..

or

n-0,2,4,.o

w (t)P (x) + t)n n B2GIw(X_

where

a0 ( l+u )
B2 -

h
(4.45)

Gi_ (x,t) and Giw (x,t) are functions to be
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determined by the boundary conditions with i = i_ 2 representing the

roller-hlnged and roller-clamped boundary cases_ respectively.

Substituting equations (4,44) into equations (4.43) and then

integrating over [O_l]_ two coupled ordinary differential equations

similar to equation_ (4.14) and (4_15) are obtained,

For n - 0_

d2w 0 1

--'"dr2 + 2(l+v)w0 = B2 0f {QT2 + Hiw 0}
d_ (4.46)

where

Hiw 0 "
- aLL - a(l-v)L - 2(l+v) - X

_2
m

_t2,,:
Olw (4.47)

+ [aLL + (l+v)]Ci_ I
n=0

Equation (4_46) has a solution

B2 t 1

w° " _ of Sin_10(t'T) 0f {QT2 + Hiw0}
d_dT (4.48)

The solutions for _ and w for n _ I are obtained by similar

substitutions and manipulations, They are

t

_1 " 1 ! __1 _ Flw(T)Sin_ll(t_T)dT

3X Wll 0

'i
t T

- f f Fl,(T')d_'dT!
O0

(4.49)
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_3

with

w
i

/

= i__ ._2 f _iw(.r)Sin,.on(t.T)d.c
3_ _' 0

Lmll

÷ f f FZ¢(T )dT'dx
O0

FIe = 3B2

/

i

_ [QT2 + Hiwl] PI (_ )d_
(4.5Oa)

1

-2f
0 I_¢(_)QTldCd_ + Hi¢l] _I

Pi(_)d >

iFlw : 3B2 _ [QT2 + Hiwl] P1 ( _ )d_

i Ff¢(_) ] >pl(_)d _+ I %rzd¢ + Hi,,,0 0

and

Hi¢l : 13 L + (l-v) - _ _St2 Gi¢

+ [_L- (l+v)] Giw I 1n=l

(h.5Ob)

:I
Hiw I 3 I
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+ [__TT + (l+_)L]0±¢ ! [
_, n=l
t

For n > 2,

I t
= _ 1 l!_/ Sinmln(t_T)Fn¢(T)d T

_n 12(_2n 2'' _in 2) _In 0

l
t

- 1-!-_2n0/ Si_2n(t-T)Fn¢(_)dT i

t
Wn = 1 -- < _ f Sinmln(t-T)Fnw(_)dT

k2(_2n 2 _ _In 2) _in 0
k

t )- _ f Si_2n(t-T)Fnw(_)aT
_2n 0

(h.51)

where

Fn¢(t) = B2(2n+l)! i

P

\

(4,52_)

] 1

+ H. !a_ - [_An+ (i+_)][ [%2 + Hiw ]Pn(_)d_
fen! 0 n

J

= ' _ + [_2+ H. ]Pn(_)d_
dt 2j lwn

Fnw(t ) B2(2n+l) j An (l-u) l

L

+ An[aA n + (i+_)] _ _id¢ + Hie n
0 Pn(_)d_ 1
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and

iiHi_m = 1 L + (l-v) - I --"2n+l St 2 Gi_

+ [aL- (i+_11G._} 1n--Ya

= l-l-- -LL- (l-v)(,L- 2(l+v) - I Giw
Hiwm 2n+l

k

I

+ [- aLL + (I+9)L] Gi,'i 1n=m

(4.52b)

We shall now construct GI¢ , Glw , G2¢ , and G2w

following boundary cases individually:

(A) Roller-hinged case

The boundary conditions to be satisfied are

for each of the

w=0

3u .

---_= B2ae 0
3¢ .

32w el , \

--- = - B2 _+ ae0 I3¢2 a
t

w

at ¢=--
2

(4.53)

The second and third conditions result from the stress boundary

conditions
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N¢ =0

M¢=O

w

at ¢=--
2

respectively °

We may satisfy the conditiens in (4.53) by assuming

@@

Cn(t)Pn(X) + B2GI_
n=l,S, 5,..

(4._4)

I 4' *

= _ ,n(t)Pn(X) - _B2ax _ e0 de
n=i,3_5,..

Z Wn(t)Pn(X) + B2GIw
n=l iS, 5, • •

Z Wn(t)P (x) + 1 B2 x /¢n
n=I,3,5,o. 0

e .

a + ae0 de

(b) Roller-clamped case

The boundary conditions to be satisfied are

u¢=O

Bw
_---- 0

Q=O

w

2

(4.55)

In terms of displacements, the last of (4.55) reads
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B2 3eI
83 (_+w) = - -- ---- at ¢ = -

3¢ a a 3¢ 2

(4.56)

(i) For

ez = ez (t) (4.57)

equation (4.56) becomes homogeneous. Now set

= = !h _n(t)Pn(X)n 2 ,6,..

(h.58)

Z W (t)Pn(X)
n

n=0,2,h, • •

(ii) For

w

eI = eI (t,¢)
(h.59)

(h.56) is satisfied if

(t)Pn(X) +¢ = _n B2G2_(x,t)
n=2 h,6,..

(h .6o)

i B2 OI x-- #n(t)Pn(x)- _'2 a
n=2 4,6,o.

w = _. Wn(t)P (x) + B2G2w(x,t)
n

n=0,2,h,. •
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oo

wn(t)pn_x) 1 B2 * 2
-_ _OlX12

n_0_2_4_,

To provide a quantitative evaluation_ numerical examples for

the response of the apex of a hemispherical shell with a roller-

clamped edge.are presented in Figures 8 through 13 using the following

types of loading:

(A) Exponentially decaying dynamic loading

p_ " 0

Pn " e-btPn(X)

(4o61)

with

a-3000 inot E - 30xlO 6 psi_ v ffi 0,33_ and p - O,7298xlO'31b-sec2/in 4

(B) Constant temperature distribution

The temperature is the solution to the following boundary

value problem [5_6]:

828 1 88 h
--= t >0 I¢1 <--

8¢2 Kd 8t -- -- 2

88* 1 * h

"-"_=_Qo t > 0 ¢ =_
8¢ K -- 2

c

8e h
--'0 t -->0 _"'2
8¢

(4.62)
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ht - o

The solution for this problem is [7]

0
QoKd hQ 1 !_ 1

Kch Kc

2
1

6

2 1 (-l)n expl_n _2 __ Cos !n_{--+_2 n-I n2 _ ! _h
L.

Finally, values of 00 and 01

equations (3_3) _ They are

may be calculated from

(4063)

with

O1 " R1 - R2
nffil,3,.o

exp !-R3 tn _

(4.64)

Qoh3 96
"----- , R2"R --R1 24K 1 _

c

Kd
R3 , _.2 __ , R4 ..

h 2 K
c

(4.65)

The results are plotted in Figures 11, 12, and 13. The symbol,

B*_ shown in these figures is defined as

Kd2a4 /
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co_,_l_i_n_ '

(A) The variation of shell thickness has very little effect

on the upper branch frequencies for hemispherical shells having roller-

clamped edges and roller-hlnged edges_ However, lower branch fre-

quencies are affected si_-ificantly as the shell thickness increases,

Furthermore, the lower branch frequencies for roller-clamped and

roller-hinged shells are not bounded_ This contradicts the results

obtained according to membrane theory given in [8]_

(B) The natural frequencies of a shell completely clamped

approach the frequencies of a roller_clamped shell when the thickness

of the shell decreases_

(C) The response of a hemispherical shell to an exponentially

decaying dynamic loading shows that, except for loading with rather

short time duration, quasi-static response in general provides an

average response, Hence when an exact solution can be obtained for

the quasi-static part, the mode-acceleration method has a definite

advantage over the usual modal analysis_

(D) The response of a shell subjected to a uniformly dis-

tributed temperature input shows that the quasi-static results never

reacl a definite value but increase with respect to time; and the

dynamic solution oscillates about the quasi-static value

(E) In the present situationj the thermal conditions lead,

according to equation (4.64)_ to an in-plane force which is linear

in time_ and to a thermal moment that reaches its steady state in a
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short time period, The thermal response solution thus has the tendency

to oscillate closely about the corresponding quasl-statlc solution.

(F) The thermal stress obtained in the roller-clamped shell

is the evidence of the existence of thermally induced vibration. The

customary quasi-static thermal problem for this case displays no

thermal stress response_ It gives only a free expansion of the shell,
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CHAPTER V

AXISYMMETRIC VIBRATION OF AN ELASTIC CYLINDER

WITH A HEMISPHERICAL SHELL BOTYOM

Recent investigations of shell vibrations are limited mostly

to shells of specific, simple configurations such as cylindrical and

spherical. The dynamic analysis of cylindrical shells can be found in

[1,2,3]. The dynamic analysis of spherical shells can be found in

[4,5,6]. For the analysis of composite shells we mention here that

Coale and Nagano [7] have considered the flexibility of a cylindrical-

hemispherical tank for the analysis of liquid sloshing. 0nly a

membrane theory was used.

The present study is concerned with the axisymmetric vibration

of a cylindrical shell with a hemispherical shell bottom. The

equations resulting from linear bending theory are used°

General Formulation and Approach

Due to the difference in the geometric structure of the shell

components, it is advantageous to use different coordinate systems

for each portion of the shell. The geometry and the coordinate systems

are shown in Figure lho The equations of motion for each part may

be written in the following general forms:

[L 8] {ui} + ph {u i} = (qui } (5.1)

and
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L {ui } =0 (5.2)

Qoi
Qo

# ........

" ..... h

W "

a

Mo

Qo

aS

/

>,

Figure 14. Geometry and the Edge Effects

where La6 and L 8 are spatial, differential operators, uI and u t are

displacements and the qu i are the load components, which include the

unknown moment M 0 and unknown shear QO arising at the Junction of the

two shell configurations.

The motion of the system Is assumed to be harmonic, or

u t " U-"t elw t

lwt
M 0 =M e

lwt
Qo=Q e

(5.3)
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Firsts the general solution for each portion is obtalnedt and all

boundary conditions except those at the Junction are satisfied. The

support conditions at the Junction are shown in Figure 14. The require-

merit that the deformation be compatible along the Junction of the shell

segments then results in the homogeneous set of algebraic equations

J

- {0}

a21 a22_i M ,
i_

(5.4)

w

involving the unknown amplitudes Q and M of the shear and moment 9

respectively, The elements alj of the coefficient matrix contain the

frequency _ as a parameter. The frequency equation is obtained by

equating the coefficient determinant to zero. The numerical deter-

mination of the frequencies is accomplished by means of an iterative

procedure,

The Cylindrical Shell

The equation for the axisymmetric motion of a cylindrical

shell_ when the longitudinal inertia is neglected and when the in-

plane axial force is zero_ is [i]

d4w * E'h* * _ _2w*+----- w + -_-- = 0

i)y 4 D*a 2 D* _t2

(5.5)

The geometry and terminology are apparent from Figure 14. The

assumption of harmonic motion of the form
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w*(y, t) = w(y)e jut (5.6)

results in

d_ _*_ _ - 0
dy _

(5.7)

The solution of equation (5.7) is

w(y) = A Cost A* * _*y + B Sin! l*y + C Cos A y + D Sin y (5.8)

with

* * E'h*

,
D* D a 2

Two of the integration constants may be expressed in terms of the

other two constants by using the boundary conditions along y - £t

with the result

c = _(_)^ + B(m)B

D - y(£)A + _(£)B

(5.9)

where D for a shell clamped at y - £

* *E *a(£) - - Cosh _*_ Cos A £ + Sinh A Sin k £

8(g) " -Sinh I £ Cos I £ + Cosh A £ Sin A £
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y(&) = - Slnh I &Cos i £ - Cos_, I & Sin A*£

_(&) = - Cosh X Cos _ & - Sinh _ & Sin X &

The boundary conditions along y = 0 are

Myy(O, t) = _:o(O)ei_t

Q(O, t) = Qo(O)elwt

(5. lO)

The application of equations (5.10) to (5.8) in conjunction with

equations (5,9) results in the general solutlon for the vibration of

the cylindrical part in terms of the unknowns M0 and QOp i.e.

iwt
w(y, t) - Ho(O)e !Cllf(l*y ) + C22g(_*y ) (5.11)

+ QO (0)e imt + C21g(X*y)iCl2f(t*y )

where

f(A Y) = Cosh _ Y + a(g) Cos A y + y(&) Sin X y (5.12)

g(_ Y) " Sinh _ y + B(£) Cos _ y + _(&) Sln _ y

and
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Cll = _ _'2 _ C12 = AX*3
(5.13)

= . , C22 =-C21 AX*3 AX*2

_hericaiBul-k-h-ea-d

The equations of motion are those of (4.1)

L($) - - aL(w) + (l+v)w - (l-v), (s.14)

nn(w) = - nn(_) + (l-_)n(w)+1+_vn(_)

X _2w X
-_w - ---"-+_Pn

a a _t2 aph

where the in-plane inertia term is neglected and

1..h 2 a2(l_v2)
= 12 _ , X = O -

' E
(5.15)

L(') = (1-x 2) _2=__ 2x _0 and
8X 2 _X

X m COS

For w the boundary conditions corresponding to the simply supported

case are prescribed. Considering the motion of the shell to be

harmonic,

(x, t) = e tut

¢m

X BnPn(_)
n=O

(5.16)
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Jut
w(x. t) = e Y. AP (x)

n_ 0 n n

Equations (5.14) then become

- [(l-v)] - An] B + [aA + (l+v)] An - 0n n
(5.17)

^n[(l+v) + aAn] Bn + {- Xu 2 + 2(ld_)

+ aAn[A - (1-_)]} An n

1

=- (2n+l) _--- f PnPn(_)d_
oh 0

where An = n(n+l). The transverse loading may be written as

Pn = QO (_'0)-i - MO {_-0}-2 (5.18)

Here _x-0} -I and (x-O} -2 are singular functions resulting in

I

f
0

t

PnPn(_)d_ - QoPn(O) _ ,_0Pn (0) (s.19)

where the prime denotes differentiation with respect to _. The

substitution of equation (5.19) into equation (5.18) and the subse-

quent simultaneous solution of equations (5,17) result in the

expressions
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An " " aln [Pn (0) QO + Pn'(O) M O] (5.20)

Bn = a2nA n

for the coefficients An and Bn. Here

and

1
aln --- [(l-v) - An ]

K h

mAn + l+v

a2n "

l-v - An

(2n+1) (5.21)

with

= oh {- Am2 + 2(l+v) - aA n [An - (l-v)] 2
(5.22)

+ ^n[(1+v)+ a^ ]2}n

Finally 9 the substitution of equations (5.20) into equations (5.16)

gives

W(X, t) " - e i_t I
n-O

alnPn(X ) [QoPn(O) + MoP n' (0) ]
(5.23)

_(x, t) =- ei_t

nmO
alna2nPn(X) [QoPn(O) + MoP n' (0) ]

F/equencv EQuations

As indicated in the general discussion0 the frequency equation

for the system as a whole may be obtained by requiring compatible
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deformation along the Junction of the two shell segments. The

conditions to be satisfied are:

and

w (0, t) = + w(O, t)

a

(5.24)

The imposition of these conditions on equations (5.11) and (5.23)

results in

s [Cltf(o) +c22g(o)] + Qo _12 f(°) + c21g(°)
0 L

® (0)[+ _ alnPn 2 - 0
nmO

(5.25)

! I ! !

Ho[Cllf (0) + C22g (0) 1 + Q0 iC12f (0) + C21g (0)

t

a n'O

-0

Nontrlvial solutions for M0 and QO exist if, and only if, the coeffi-

cient determinant for equations (5_25) vanishes. The resulting

frequency equation is

! t

[Cllf(O) + C22g(0)] [C12f (0) + C21g (0)]
(5.26)
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L

o t 1
"},Cllf (0) + C22g (0) - a

!

aln[P n (0)] 2 _.
n_O

iC12f(O) + C21g(0) + _ alnPn2(O)
n=O

-0

Np_eri_al E_gmp_le

The natural frequencies are calculated for various thicknesses

and lengths of the cylindrical part of the configuration, The

following dimensions and material properties were used for both the

bulkhead and the cylindrical part of the system:

E - 30x106 psi, a n 20 tn._ v - 1/3, D " 0.00735 lb-sec2/in 4

The open end of the shell is considered as clamped. The resulting

frequencies are compared to those of a clamped-clamped cylindrical

shell [i]o The results are shown in Tables 2 and 3. The natural

frequencies corresponding to a clamped-clamped cylinder are denoted

by mn" Gn represents the frequencies corresponding to the present

numerical example.

The effect due to the bending rigidity of the cylinder and

the flexibility of the bottom on the fundamental frequency of the

cyllnder may be shown by comparing _i t°_E_ and m to _ where
0a 2 n n P

is the membrane frequency of a cylinder, The comparison of m

$pa 2 n

and Gn is illustrated in Figures 15 and 16. A typical curve of
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Table 2. Natdral Frequencies for L = 40 Inches

Frequencies

h=loO in,

h=0.4 ino

h = 0o2 in.

Modes

_2

_2

_2

J

_2

_2

i
I

Ist Mode ! 2nd Mode
I

ii

0°10239 x 109 0,10569 x 109

0°10279 x 109

0.10210 x 109

0.10216 x 109

0.10206 x 109

0.10207 x 109

0.10775 x 109

0°10260 x 109

0°10296 x 109

0°10219 x 109

0o10227 x 109

3rd Mode

0.11750 x 109

0.12h02 x 109

O.104hl x lO 9

0°10556 x 109

0°10268 x 109

0.10292 x 109
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Table 3, Natural Frequencies for H - 0,4 Inches

: I
Frequencies Modes 1st Mode i 2nd Mode 3rd Mode

.2 0.10287 x 10;_11 x 109 0.12354 x 109

L- 20 in. I._.. t ---.--. J

_2 ;0.10395 x 109, 0.11381 x 109. 0.15791 x 109

L - 40 in.

L - 60 in,

_2

t_2

r

!0.10210 x 109

0.10216 x 109

' fl 2 !0.10205 x 109
I

I

_2 0.10206 x 109

0.10260 x 109

0.10300 x 109

0.10441 x 10 9

' 0.10556 x 109

0.10217 x 109 0.10254 x 109

0.10222 x 10 9 0.10274 x 109
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verm1_ Q2 is shown in Figure 17, Figure I_ shows the first three

mode--hapes.

Conclusions

1. The frequencles for an elastic cylinder with a hemlspherlcal

bottom are obtained in accordance with the bending theory of elastic

thin shells. Results indicate the changes in magnitude of the shell

system frequencies closely follow the pattern of a clamped-clamped

cyllnder.

Z. Th£ numerical results also show that the difference in the

clamped-clamped and the present composite shell frequency is greatest

for short cylinders and decreases as the length of the cylinder

increases as shown in Figure 15.

3. For very thin shells, the frequencies of the shell system

are close to those of a cylinder without bottom, and the fundamental

frequencies reduce to the quantlty_as the thickness tends to zero

pa 2

for both cases under consideration. (See Figure 16).
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CHAPTER VI

RANDOM EXCITATION OF THIN ELASTIC SHELLS

In 1905, Einstein Ill studied the Brownian motion of a free

particle and obtained the mean-square value of the displacement of

the particle. Uhlenbeck and Ornstein [2] developed the theory of

Brownian motion in 1930. Here the mean values of all the powers of

the velocity and the displacement of a free particle in Brownian

motion have been calculated, and the velocity of a harmonic oscillator

has been obtained by using the Fokke_-Planck equation. While most

of the work in the earlier stage is concerned with the Brownian

motion of a one degree-of-freedom system, Van Lear and Uhlenbeck [3]

applied the method introduced by Ornstein and Uhlenbeck to calculate

the Brownian motion mean-square deviation for strings and for elastic

rods. In 1945, Wang and Uhlenbeck [4] developed the theory of reference

[2] by using the theory of Gaussian random process. Also in this

same paper the contributions to the theory of random vibrations

previously accomplished have been summarized.

The first investigation on the buffeting problem by using

stat_t_c_l concepts was done by Liepmann [5] in 1952. The response

of strings to random noise fields was studied and compared with some

experimental results by Lyon [6]. Erlngen [7], first obtained the

response of beams and plates to random loads in 1956. His work

includes the cases of simply supported bars, cantilever bars, clamped
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platest and simply supported rectangular plates. Samuels and Eringen

[8] in 1958 studied the response of a simply supported_ damped

Timoshenko beam to a purely random Gaussian process° Caughey [9]

has obtained the result that the mean-square deflection at every point

of a nonlinear string is smaller than that for the equivalent linear

string° Crandall and Yildiz [10] have studied the random vibration

of beams by using several different dynamic models such as the

Bernoulli-Euler beam, the Timoshenko beam, the Rayleigh beam, and a

beam which has the shear flexibility of the Timoshenko beam but not

the rotatory inertia. Yo K_ Lin [11] has investigated the response of

a nonlinear flat panel under periodic and random excitation on the

assumption of a dominant fundamental mode. Caughey and Stumpf [12]

analyzed the transient response of a simple harmonic oscillator to a

stationary random input having an arbitrary power spectrum and

applied its solution to the application of earthquake problems°

The response to white noise excitation of a light elastic

string loaded at equal intervals by a number of equal masses is

examined by Ariaratnam [13] using the theory of the Markov random

process and the associated Fokker-Planck equation. Caughey [14]

derived in 1963 the Fokker-Planck equation starting with the basic

concepts of probability theory and then applied this to discrete

nonlinear dynamic systems subjected to white random excitation. By

using the theory of Markov processes ant the associated Fokker-

Planck equationp the random vibrations of a hinged, axially restrained,

nonlinear elastic beam has been studied by Herbert [15], and the same

approach has been used by the same author in studying the random
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vibrations of plates with large amplitudes [161_

The progress achieved by the large number of investigators

who have studied the launch=vehicle buffeting problem in the four

years of its recognized existence since 1961 up to 1965 has been

reviewed by Rainey [17]_ In [18]_ the response of a simple oscillator

to separable nonstatlonary random noise has been studied by MacNeal,

Barnoskij and Bailie, The effects of transonic buffeting on a hammer

head-shaped payload has been studied by Andrews [19] in 1966, Re-

cently, Peterson_ Howatd_ and Philippus [20] have studied the response

of launch vehicles to separable nonstationary random transonic

buffeting excitation°

The study of the vJbratlon of thin shells acted on by broadband

stationary random loads has been done by several authors [21, 22_

23]_ The asymptotic method is used, The purpose of this investi-

gation is to study the response of a thin elastic shell to separable

nonstationary random loadings_ Using a matrix differential oDerator_

the general equations of motion for a torsionless arbitrary shell

are written in vector form° The effect of a viscoelastic foundation

is included° The complete solution to the transient vibration

problem is then sought by using the method of spectral representation

f_ the unknown variables_ Once this solution is obtained, the

dynamic response of the whole system may be obtained in a convolution

integral_ The statistical values for the shell, when the shell is

considered to be excited by some random processes0 may be calculated,

For the purpose of illustration, hemispherical shells with roller-
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hinged and roller-clamped edges are analyzed when the pressures are

either broadband processes or band-limited processes.

ni_onn_seof a nArA!_[ary.Shell

The general equations of motion of a shell, when the effect

of a viscoelastic foundation is Included_ may be written as a system

of thzee linear, coupled differential equations of the form*

[Las] {us) = {Fa} (6,1)

where [Las] is a matrix differential operator and where {u 8} and

{F a} are the displacement and generalized load column vectors, re-

spectively. Further

_u _2u

iF } = kfua + If'-_+ phial- Pa
a _t _t2

(6.2)

The effect of a viscoelastic foundation, characterized by an elastic

parameter kf and a viscous damping parameter If, has been included in

equation (6.2) with the assumption that kf as well as If is the same

in the normal and tangential directions of the coordinate curves,

{pa} is the load column vector,

We employ the method of spectral representation for the unknown

varlables, Designating by u a any dependent variable of a solutlon

state of equation (6,1), we express the variables in the form

*Detailed formulation of this section may be seen in Reference [24].

**A11 Greek indices range from 1 to 3, and the Roman indices from i to

unless specified otherwise.
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u (_I_ _2_ t) icz t=1
(6.3)

where qi(t) are the generalized coordinates and Uia designates the

dependent variables of a mode of undamped free vibration with a

natural frequency mi_ and _I and _2 are the coordinates along the

lines of curvature of the middle surface of the shell,

In the free vibration state_ l_e_ kf = Af = Pa ffi 0 iv equation

(6_i)_ the relatim

ua(_l_ _29 t) = Uia(_l _ _2) eiwit (6.4)

exists,

Substitution of equation (6,3) into equation (6.1) and then

usinr equation _6o4) gives

Qi{Uia } - {pa)
i=l

(6.5)

where

d2q i dqi

Qi _ ohm÷ _f _-_'÷ (kf ÷ ohwi2) qi
dt2 dt

(6.6)

Using _he orthogonality condition of the modes of free vibration of an

arbitrary shell with a set of prescribed homogeneous boundarycondi-

tions [24J_ the following relation is obtained:



93

3 3

/ _ U U dS- / _ Uia2 dS
S a'i i_ Ja 81J S _ffil

(6.7)

where 61j is the Kronecker delta and S denotes integration over the

middle surface of the shell.

Multiplication of both sides of equation (6.5) by the row

vector [Uja] and use of equation (6.7)_ results in the following

expression for qi:

d2q i I
If ,:kf i i• +_dqi_ + ;_=_+ ui2 ql = _ Qi (t)

dt2 ph dt i0h = oh

(6.8)

Qi(t) now reads

3

f X UiaPadS
S a=l

Qi(t) = - _,
3

f X Uia 2dS
S a'I

(6.9)

The complete solution of equation (6.8) for the underdamped case

(kf/2ph) 2 < k /ph + wi2 is givennow by
f

qi(t) - exp[-_ft/20h](AiCos Yit+ BiSin 7i t) (6.10)

t

+ (1/oh7 i) _ QI(T) exp[-Af(t-T)/2oh]Sin 71(t-T)dT
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where

½

_i " i(kf/ph) + _12 - (Af/2ph)2 (6.11)

and the arbitrary constants A i and B i are determined from the initial

conditions.

Peterson, Howard, and Philippus [20] have investigated the

response of launch vehicles to nonstatlonary random buffeting excitation.

The launch vehicles are treated as simple beams. The general method

of procedure presented in Reference [20] is followed and extended to

shell problems. The loads on the shell are taken as the following

sample functions of distributed nonstationary random processes :

{Pa (K)(_l,_2.t)} = pla(_l,_2,t) {p2a (K)(_l,_2,t)} (6.12)

where pla(_l,_2,t ) is a known deterministic function of _i,_2, and t|

and p2 (K)(_l,_2,t) is an element of a stationary Gausslan random process

t

whdch has zero mean value, cross power spectral density Gas(U,_l,_l

t) ! !

_2,_2 , and the cross-correlatlon function r s(_,_l,_l ;_2,_2 ) for

each of the Ps specified in equation (6.12).

stationary random process {p2s(K)(_l,_2,t)} is generated
While the

by the excitation of some physical phenomenon, the deterministic function

pla(_li_2,t) is governed by the amplitude of the excitation.

For simplicity, let us assume the shell to be initially at

rest. Equation (6.10) becomes

*{ .... } represents now the ensemble of each of the elements indicated

by the superscript (K).
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t

qi(t ) _ . I _. f Qi(?)exp[olf(t_T)/2oh]

ohYi 0

(6_13)

Sin Yi(t=_) d_

The ensemble of responses can be written now as

_u_(K)(_l,_2,t ) - iqi(K)(t)_ Uia(_l,_2)
i-1

Uia(_l,(2) t _
- ,. f '(Qi (K)(_)

i-i ohvi 0

(6o14)

exp[-kf(t-_)/2ph] SinTi(t_r)d_

and

J
(K)

(t)_

3

I Ui_ p (K)(_l,_2,t)I. dS
S _=i :,

f Z Uia2dS
S a'I

(6o1_)

Using the assumption equation (6_12), equation (6,15) takes

the form

i (K)
iQi

\

(t)," =

3 I

f X Ui_Pl_(_l,_2,t) (K) (_ t dS
S u-i <P2a 1 '_2't) i_

3

f I Ui_2 dS

(6.16)
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Substitution oi equation (6.16) into equation (6.14) leads to

/

_ t

J (K) t>_ - _ Via Z f / Ui_(_l,_2).U_a (_1_2 '
r iffil _'i 0 S
J

(6.17)

• pla(_l,_2,t) _P2a (K)(_l,_2,t)2

" exp [-If(t-_)/20h] Sin 7i(t-_) dSd_

with

Via " Ui_(_l_2)

QO

philf I ui2dS
S a'l

We are now ready to calculate the statistical quantities for the

shell response.

a, Mean value of response

The mean value of {Ua(_l,_2,t)} is an ensemble average over

U (K) (_l,_2,t) :

_o

t-1

3 t

f f ui_(_l,_ 2)Vlaa!l 0 S
(6.18)

• pla(_l,_2,t) _2a (K) (_1,_2 t t)_
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exp[-_f(t-T)/20h] Sin ¥i(t-T) dSdT

Since the mean value of p2(_lP_2_t) goes to zero by assumption and

from equation (6.12),

p(K) "--(_I '_2*t) . Pl(_l'_2't) i (K)(_l+_2,t),= <;P2a
(6.19)

=0

Thus,

++u:(K>(_1,_2,_:),. . o (6.20

b. Cross-Covariance of Response

_._u_(_)_.(_l,_2,_)....0,_he_ross-covarla.ceoftheSince

response must equal to the cross-correlation. By definition

ras(t't';_l'_l'_2'_2') = </U"-..a(Z)(_l'_2't) Us(X)(_l''_2''t;)-> (6.21)

or by using equation (6.17), equation (6.211 reads

ra6(t,t';_l,_l';_2,_2') =

- ® 3 3

i=i i=J a=l 8=1

(6.221

: t t'

"_fl
O0

f f Uia({1,_2) Uj8(_l',_2')
S $'
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t

" P28(K)(_I' _ 2,9t,) _' exp[-lf(t-z+t'-_')/20h] Sin Yi(t-_)

' Sin yj(t'-_') dS'dSd_'dT _

Using the assumption that p2 (K)(_l,_2,t) is stationary gives

(K)(_l,_2,t) p2 (K)(/_IS,_2,,t,) , = f"
P2a 0

G(W;_l,_l';_2,_2') (6.23)

• Cos m(_-_') d_

(K)(_i,_2 t) )where G(w) is the power spectrum of (P2_ t

Substitution of equation (6.23) into equation (6.22) gives

® - 3 3

- vi vjB(h', 2')
i=1 J-I a-1 B=I

(6.24)

t t _

I I I I _ ui_(_l,_2) ujB(_l',_2') Pl_(_l'_2 't)O 0 S S'

• plS(_l,,_2',t') G(W;_l,_l';_2,_2') Cos w(Tt-T')

exp[-Af(t-_+t'-z')/2oh] SinYi(t-z) SinTj (t'-z') doxIS'dSdz' dz_

Since all physically realizable processes involve power

spectra which go to zero for sufficiently high frequencies, the
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requirement of physical reallzability in the present case is that

/ C(_0)d_ <
0

(6.25)

and hence the integrals involved iv equation (6.24) are convergent.

The order of integration may then be reversed to give

! t I

rag(t,t .(i.[1 ;[2.[2 ) =

® _ 3 3
! !

I vi.vj.( l ) [ [
i=l J=l a=l 8=1

(6,26)

i ....It t

* _J (f f f Uia(_l._2)Pla(_l,_2.t)

\

i '

i I t I t t t t I

' _ _, OaS(_l '_2 )PlB(_i '_2 ,t )G(_;_I,_I ;_2._2 )dS "

/

! ! #
° dS Cos _(T -T) exp[-Af(t-T+t -t )/20hi Sln Yl(t-T)

I I t i

" Sin 7j(t -_ )dT dT i, de
t

/

The double surface integral over S and S
|

resolves the time-

dependent CPSD of the excitation Into the tlme-dependent CPSD of the

excitation of the i-th and J-th modes. The double integral over

!

and _ then yields the time-dependent CPSD of the responses in the

i-th and J-th modes. The integration over m gives the cross-covarlance

of the modal response; and finally, the double summation over the

modes gives the cross-covarlance of the response*

*See Reference [20].
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Consider the partlcular case when pla(_l_2_t) = Pla(_lP_2),

i.e._ when equation _6_12) represent8 a stationary random process_

t t

Furthermore_ G(W_l_ 1 _2_2 ) = G(_). For the tlme-dependent,

normallzed, cross-correlatlon function_ one has

r 8(t . t_ _i,_i;_2_2) =

_ 3 3

I I vi vj   z6jz I I
i-i J'l a=l B=l

(6°27)

where

GO

pla(¢Z,_,2) " _ AKaU&a(_:l,_ 2)
K-1

(6.28)

has been expanded in terms of the orthogonal function UKa(_I,_2). AKa

is the normalization factor, and in equation (6.27)

_t t

Oq2(t) = f / f
000

! W ;

Cos m(_ -_) exp[-kf(t-_+t -z )/20hi
2

7i

Sin 71(t-T) Sin 7i(t-_')d_'d_dw

(6.29)

represents the normalized variance of qi(t). Equation (6_29) is

particularly interesting, sinc_ it is simila_ tc th_ variance 3f the

harmonic oscillator obtained by Caughey and Stumpf [12].

two become identical if we set _w0 = Af/2ph and wI = 7 i.

of equation <_.29) gives

In fact. the

Integration
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Oq2(t) " f
0 Iz(=)]2

_f/oh

1 + exp[-(xf/0h)t]' i +

71

(6.30)

" Sin 71 t Cos yl t = exp[Xf/2oh)t] 2 Cos 71t

Xf/O h i

+====_=_Sin 71t

Yi

Cos 7it - exp[Afl2ph)t]

(Af/2oh)2-Ti2+w2

Yi = n2yi• Sin t Sin wt + • Si t_

712

71

r

d_0

where

" 2Q
IZ(=)I 2 = (Xf/2ph) 2 + w 2 . YZ + (=Xf/ph) 2

Some of the properties of Oq2(t) observed in reference [12] are,

(1) As t ÷0

C 2(t) =_ 0
q

(2) /US t _ ®

o -(t)- ]
q o [z(=) [2

The integration of equation (6.29) may be done analytically.

numericallys or approxlmately, depending on how the power spectrum

is given.

Once the geometry of the shell is known, and if the orthogonal

functions uia(_l,_ 2) for each a are given, equation (6.27) is completely
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defined by knowing the deterministic function from the input data and

the power spectrum for the particular stationary Gaussian random

process_ Consider as a special example_ the hemispherical

shell subjected to the presently deflned separable nonstatlonary

random process°

Axis___X___metri____egL.HemlspheKical Shells

Consider that the viscoelastic foundation is absent in the

present analysis so that the previously obtained result for the

dynamic response of a hemispherical shell may serve the purpose here.

The governing differential equations for the hemispherical shell

have been solved in terms of the normal modes fro_ equation (4.31)

to give

| _,---

u@(x,t) = - _ _n(t) Pn (x) _l-x 2
n-2,4_,,

or

nm103m5,..

w(x,t) " _ Wn(t ) Pn(x)
n=0,2,4,..

or

n=im3,5,.,

where n - Ot204t.. corresponds to the roller-clamped boundary case, and

n - 1t3mS,.o corresponds to the roller-hinged boundary case. Prime

denotes differentiation with respect to x_ and Pn(X) is the n-th

degree Legendre polynomial. Referring to equations (4,19) m (4.26) m and

(4_29), _n(t) and Wn(t) are the following:
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For n = O,

ft 1w A1 Sin (t-T) f Pn(_,T) d_dT (6.31)

0 = i_i0 0 _i0 0

_0 has been neglecte_, since it contributes nothing to the displacement

!

u¢ due to the fact that P0 (x) = 0. Here

( o 01 lA = a2(l-_ 2) = 2(1 _) _ (6°32)

1 Eh E

a is the radius, h the thickness, 0 the mass density, _ the Poisson's

ratio, and E is the Young's modulus.

For n = l,

_i (t)
I t

= i__ _ f F21(T) Sin _ll(t-T)dT

31 _iI 0

tT }
- I I Fll(W')dx'dx

00

F21(T) Sin mll(t-T)dT

t T ,dTI

+ f f FII(T')dT
O0

(6°33)

where
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FII " 3A I pn(_:,'OPl(_:)d_ - 2 I PI(_) P_b(_b,'r)d_bd_
0 0

F21 " 3AI _ Pn(_,T)PI(_)d_ + / PI(_) p (,,T)d,dI o o
- A

(6.34)

here

For n > 2,

F2n(-O = Al(2n+l )

f

J

- [_^ + (l+v)] f Pn(_oT) Pn(_)d_
n 0

J
i^ - (l-v) + _
I_ n dT2_

(6,35)

(6.36_
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1

" f Pn(_, T) Pn(_)d_ + An[aA
0 n

+ (z+v)]

1 _(_) '

" f Pn(_) f Po(_,z)aOdz>
0 0

2 1=_ i hA2n)l ,I ÷ ( .
Wln 2A Aln Aln 2

I .

1

2 = z. . ( . &_n)2
Wln 2A Aln Aln2

(6.36b)

with

A = n(n+l)
n

Aln = SAn[A n - (l-v)] + A + (l+3v)n

= 2(1+v)]A2n a[An(A n - l+v)2 - a2A3n - 2_A n

+ (1-v 2) [An- 2]

A3n = aAn( An - l+v) + 2(Z+v)

112

Equations (6.12) take the form

/

' ij (K)(
.,p$ _,t)
!

/ i
; (K)

pl¢( '_= _,t) ;,P2¢ (_,t) :"
i ;.

(6.37)
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{pn(K) (_,t) } = pln(_,t)
(K)

{P2n (_:_t) }

for the present case.

The statistical quantities are

a, Mean value of response

Equation 46.20) is now

,_,:U,(K)(x,ti . - o 46.38)

•W(K) (x,t) . - o

which may be obtained directly from equations 46.31) to 46.36).

b. Covariance of Response

The correlation functions for the displacements u@(x,t)

and w(x,t) are

2

ruu(t,t' ;x,x') <__n(K) (t) _n (K) (t ;')'_ Pn' (x)- I
n=2,4_6,..

or

n-1,3,5,..

(6.39)

r_(t,t';x,x') = I
n=0,2,4_..

or

n=i,3,5,..

Wn (K) (t)wn(K) (t' i
/

Pn(X)

ruw(t,t';x,x, ) = ....._n(K)(t)wn(K) (t") ""
n=2_4t ••

or

n-1,3,5,..

Pn' (x) Pn(X)
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The correlation functions ._/_n(K)(t). _n(K1(t'>. > _ <:wn(K)(t)

(t)wn(K) "•: (K) (t')" : are obtained by using(K1(t') , and _n• Wn ,,'"

equations (6.32) p (6.33) _ (6.34), and (6.351.

For n _ 0_

w0( )(t)w0/ Z (K)(t,)..._>

A 1 )2 t t'
- I/

_Io o o

Sin _lO(t-T) Sin _10(t'-_')

(6.401

11

':f f
,0 0

" d_'dt_

Pln(;_1 pln({ ',T')

d_'d_?

i

.... (K) (K) ([, ,:,P2n (_,_1 P2n _')"'

For n _ I_

,-+i(K)(t)_i(K)(t' )..
(6o41)

._ i_!_It t'

(3}')2 i_112_ _
Sin Wll(t-_)Sin_ll(t'-z') F21 '

| "_.

.21(_) (T)._

t t t T I

•d_d_'-__i / f f
Wll 0 0 0

SinWll(t'T)
dn'd_'d_

!t t T

_---i/ ] / sln,,,11(t'-_')
Wll 0 0 0

d_d_'d_
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!
tt T T

+ff ff
O0 O0

_ll(n)F!l(n' )_ dn 'dndT'dT 1

J

(K)(t)wl(K)(t%

I tt'
i _..___ff

(3),) 2 mll 200
Sin_ll (t-T)Sin_ll (t '-'r ') _21 (z )F21 (T')_

t t! T
!

" dT dT + 2-_...f f f

_n o o o

!

Sin_ll (t-r)_21(T)FII(n %

!

,, 2ttT" dn dT dT + -- f f f Sin_ll(t '-T' ) I (T')FII(

_11 0 0 0

t t' T r'

dndr'd, + f f f f
O0 O0

_II(_)FII(_' )_ dn!dndT 'dI

where

_21(T)F21(T')_ (6.h2)

II _'= (3AI)2 _ _ rnn , Pl(_)Pl( )d_d_'

i i ¢'(_')

+ f f f r¢,nPI(_)PI(_')dCd_'d_
000

! !

s.1 ¢ (_) ¢({)

+fff f
000 0 ' 'd_ 1

P¢'n PI(_)PI(_')d¢ dCd_
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<2i(T)Fii(T' _

ll(3AI)2 _ rnn' Pl(_)Pl(_')d_'d _

i i .¢(()

+ f f ] ten, PI (_)PI (_')dCd_'d_
000

i i ¢'(_')

-2 f f f r¢,n pl(_lPl(_')d¢'d_'d_
000

flflf, ( °)
_) ¢'(_

-2 f
000 0 rcn, Pl(_)Pi(_')dCd¢'d_'d_l

(T)FII(r

(3AI)2 f f
0 0

rnn, PI(¢)PI(¢')dCd¢

i i ,O'(_'
-2fff

000

)

re, n PI(¢)PI(¢' )d¢'d_'d(

i i ¢(_)
-2fff

000
rcn, Pi(_)Pi(_')dCd_'d_

i i ¢(¢) ¢
+4fff f

000 0

'(¢')

with
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rnn t - (_, ,t' "

- , _(_ (_' *'_r_n, .P tt)P n _ J_

For n > 2_

<_n (K) (t) _n (K) (t')'"_> (6.43)

=_

_,_' (m2n 2 -mln 2)

t t'

JL_fi
_In 2 0 0

Sinmln(t-_)Sinmln(t'-x')

" (K) (3) Fin (K) (_") __." _Fln

t t t

d_'d_- _ f f
_in_2n 0 0

Sinmln(t-z)

/ (K)(x,_.>. Sln_2n(t'-T' ) _/FIn(K)(T)FIn .-- dT'dT

t t'

-__L_.ff
_In_2n 0 0

/

Sinm2n(t-z) Sinmln(t'-T') _._FIn(K) (3) Fln

t t'

' dT'dz +-2Lf f Sinm2n(t-T)Sinm2n(t'-T' )

m2n 2 0 0

i

(K)(z) (K)(T') f> dT'dT_
.!n Fln :--

/ (K)

• n

(t)w (K)(t,)i..:,
n
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I !

t t , ,

, 1 ( _ _ f Sin_!n(t-T)Sin_In(t -T )

_4(_2n2-mln2 ) _in 2 0 0

• _2n(K)(T)F2n(K)(T')_ dT'dT -

!

t t

f f Sin_in(t -x)

mlnm2n 0 0

• Sinm2n(t'_T' ) _2n(K)(T)F2n(K)(T')_ dx'dT

i t t'

...f f Sinm2n(t-m)Sin_In(t'-_')_2n(K)(_)F2n(K)(_')_

_In_2n 0 0

!

tt

' dT dr + _ f

m2n 2 0 0

Sin_2n(t-T)Sinm2n(t'-T')

• _2n(K)(x)F2n(K)(T% d_'dT 1

The expression fOr_n(K)(t)wn(K)(t')_ can be similarly obtained.

Here

(K)(t)Fln(K)(t')_
(6ohh)

ii

= A2(2n+l) _ ; Pn(_)Pn (_
0 0

• _ABnP@(K)(_,t) +

,)
0 0

@2pc(K) (_,t)
1

Bt 2
A3nP¢(K) (_ ',t')

_2p¢(K)(K ' i

',t ) \,,, ,
+ _ __ , ....de dCd_'d_- [aA

_t,2 n

/

ii

+ (i+_)] _ ; Pn(_)Pn({
O0

l

)
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pn(K)(_',t')_

! !

, 11¢({) ,

+ (I+_)1 f S S Pn(_)Pn( _ )• d¢d{ d_- [aA n 0 0 0

/ IA3nP¢(K ) S2P# (K)(_' )_n(K)({,t) ( , ,t') ,
• ,t') + X ' )_d¢'d_ d_

_t'2

+ [_A n + (i+_)]
I i ¢'(_') {I

S S S _n(K)({,t)Pn(K)(_',tt)_ d¢'d{'d
000

/

n K) (t)F2n(K) (t v)_

= A2(2n+l)2 0f 0fPn(_)Pn({'Y_" n- (I-_) + X _)t_'

• - (l-v) +
n

Pn(K)({,t)

\

Pn(K)( ',t,)\. d_

/

' {'11¢( )
!

d_+fff
000

- (l-v) + X B_2] pn(K)(_,t) An[_A n + (l+v)]

p¢ (K) ')..... ' '• (_',t de d_ d_

z ]_,¢({)
+ f f J Pn(_)Pn(_')

000

o //A

,,,, n[aAn + (i+_)] p¢(K)({,t)
\
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Pn ..' t' d¢d_'d_ + A2n[aA n + (l+v)]

1 1 _(_) _'(_')
fff f
000 0

• p (_)Pn(_ ')n
..(K) (K) ,)_><..p_ (_,t)p@ (_',t _" d@d_'d_ :

Since the substitution of equations (6.37) into equations (6.44) leads to

rather lengthy expressions_ we shall consider equations (6.39), (6.40) D

(6.41), (6.42) 9 (6.43), and (6.44) to be complete for the present

purpose.

Numerical Examvle

For simplicity, let the roller-clamped hemispherical shell

be subjected to a uniformly distributed nonstationary random process of

the following form:

/

i (K)
_P@

1

(x_t) _ = 0 , 0 < t < T (6.45)
I im

I (z)
: Pn (x,t)

I
(K)(t) 0 < t < Z

=Pln (t) P2n ' -- --

Equations (6.45) indicate _hat the random process is uniformly

distributed over the shell surface, and perpendicular to the middle

surface of the shell only. One such application for this dynamic

model is that of the hemispherical nose of a space vehicle subjected

to the transonic buffeting pressure.

Knowing that
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P (x) = 1
0

(6,46)

one sees immediately that only the breathing mode is excited by this

process.

The covarlances of the response are

/" (K) (K)
u_ (x,t) u_ (x',t)z> = o

w(K)(x,t) w (K)(x',tt)_

= . wo(K)(t) w_ 'K) (t'j!_

(6.47)

A \2 t tI

J:l. f f
X_IO / 0 O

Sinulo(t-_)Sin_ (t'-T')i0

" Pln(T)Pln (T') ': .P2w(K)(T)P2w (K)(1"')II'>1 d_"dT

Using the assumption that the random process is uniformly

distributed over the shell_ equation (6.23) gives

<-"P2n(K) (x)P2n (K) (T")_:_ " f"
0

G(_)Cos _(T-T') d_ (6.48)

G(_) is the power spectrum of {P2n(K)(t)} .where

Substitution of equation (6.48) into the second equation of

(6.47) gives

c,"W(K) (x,t) w(K)(x',t;)'\ (6.49)
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li_lO/ _0 0_ O_Sin_lo(t-T)Sin_lo(t'-_')

!

• Pln(T)Pln(V') G(_)Cos _(T-T') dmdx dr

types:

Let the excitation P2n(X,t) be of the following two different

a. A uniformly distributed broad-band white noise _

G(_) =

2_AD
, _ > 0

0 , _ < 0

(6.50)

Equation (6.29) takes the form:

rww(t ,t ';x,x' )

t
Cos_10(t'-t) f PIn2(T)dT

0

(6.5i)

- CoStal0 (t '+t )
0

Pln2(T) Cos 2_IoTdT

t

- Sin_lo(t' +t )
0 Pln2(T) Sin 2m10 TdT I

It is assumed here that t' > t. For t' = t,one has the mean-square

value of response



n6

%2(t) -
DA12 I ft(_io )2 0

Pln2(T) dT

t

- Cos 2mlOt

t

- Sin 2mlOt

Pln2(T) Cos 2ml0TdT

Pln2(T) Sin mloTdT 1

b. A uniformly distributed band-limited white noise

G(_) =

Equation (6.47) becomes

(6.52)

(6°53)

Fww(t ,t ';x,x' ) 6. I._54;

AI 12= __ G O

tt

ff
00

!

! !

Sin _10(t-T) Sin ml0(t -T )

!

" Pin(T) Pln (v)
Sin[ 2m10 (t '-t )] L

dTdT '

ft '-t

! !

Again, it has assumed that t > t. For t = t, the mean-square

value of the response is

Ow2(t ) = AIk-_10)

t t

2G0_I0 _ f [Sin_lo(t-T)]2[Pln(T)]2 dTdw
00

(6,55)
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Consider the mean-square response with the above two different

types of power spectra accompanied with the following forms of

deterministic functions:

a. Sinusoidal modulation_

Pln(t) = Sin mmot , 0 i t _ T (6.56)

Case a

a 2(t) =
W

Case b

DAI2 I _2m02
t + Sin 2ml0t ....

2(I_i0)2 2_I0(_I02-a2_02 )

- Sin 2a_ot _I02

2_mO(_lO2-_Zmo 2 )

(6.57)

aw2(t) =
ml0

-m2_02+_i02

S_O

_i02-_2_02 Sin mlOt I

2

Sin amO t
(6.58)

b. Constant modulation

Pln(t) = a_ 0 , 0 __ t _ T (6.59)

Case a
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Sin 2_lOt I (6.60)

Case b

A_ !LI2 2Ow2 (t) - 2G0Ul0
l_lO / ulO 2

[Cos _i0 t - 1]2 (6.61)

The above obtained mean-square responses have the following common

properties:

(i)

(2)

as t ÷0

02÷0
w

as t-_O

(o2) -* 0
_t

Note here that the root-mean-square response, which is

denoted by RMS responsem is the square root value of each of the

mean square responses.

Numerical results are plotted in Figures 19 through 22 by using

an electronic computer with the dimensions and material properties of

the shell as

1

u = 3 g E = 30 x i06 , a = i00 in.

Conclusions

(A) Random excitation of thin elastic shells has been studied

by using a modal analysis. Numerical results are obtained for
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hemispherical shells with roller-clamped edges subjected to non-

stationary separable random processes uniformly distributed over the

shell surface. The white noise spectral density applied in the

calculation is to simulate the load on a hemispherical shell nose of a

space vehicle when experiencing the transonic buffeting pressure

during the flight. For this type of hammerhead payloadp flight

data from a Atlas-Able V model shows that the fluctuating pressures

tend to produce nearly constant power spectral densities over a low-

frequency region. However, in order to provide a general view, the

wide band distribution of the PSD is also included in the study.

(B) In an actual dynamic loads problem, the choice of the

deterministic function depends on knowledge of the actual excitation of

the vehicle. This knowledge would come from wind tunnel data, flight

measurements 9 an estimate based on practical experience, or a

combination of these. The analysis carried out for a hemispherical

shell gives one a better insight into the shell type of problem and

provides one with a general view of the effect of different types

of deterministic functions.
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